P-Funktionalisierte Diferriophosphonium Salze des Typs [$\{CpFe(CO)_2\}_2PPhR$]⁺X⁻ und [$\{CpFe(CO)_2\}_2PClR$]⁺X⁻ *

Ingo-Peter Lorenz, Wolfgang Pohl, Heinrich Nöth und Martin Schmidt

Institut für Anorganische Chemie der Ludwig-Maximilians-Universität München, Meiserstr. 1, D-80333 München (Deutschland) (Eingegangen den 17. Januar 1994)

Abstract

Diferriophosphonium salts containing an alkyl-substituent can be synthesised by two different ways. The first is the deprotonation of $[{CpFe(CO)_2}_2PhH]Cl (1)$ with KO'Bu in THF as a one-pot reaction at $-78^{\circ}C$ to give the unstable diferriophosphine complex $\{CpFe(CO)_2\}_2PhH (2)$ and its realkylation by RX (R = Me, CH₂Ph, CH₂COOEt; X = Cl, I), which results in the *open* diferriophenylalkylphosphonium salts $[\{CpFe(CO)_2\}_2PhR]X (3a-c)$. Photolysis of 3a-c eliminates one CO-group with formation of the *closed* diferriophosphonium salts **4a-c** with one bridging CO ligand and a Fe-Fe bond. Deprotonation of the salts 3a,b by bases gives the unstable neutral diferriophenylphosphorus-ylides or better the μ_2 -phosphaalkene complexes $\{CpFe(CO)_2\}_2PPh=CHR'$ (5a,b), which eliminate the dimer $[CpFe(CO)_2]_2$ to finally give the 1,3-diphosphetanes (PhPCHR')₂ by dimerisation of the unstable phosphaalkene. The second and much easier method for the preparation of diferrioalkylphosphonium salts is the cleavage reaction of $[CpFe(CO)_2]_2$ with RPCl₂ in toluene. The phosphine fragment RPCl inserts into the Fe-Fe bond to give the chlorine substituted diferriophosphonium salts [$\{CpFe(CO)_2\}_2PCIR]CI (R = Ph, Me, {}^iPr, Cl) (6d-g)$ and [$\{CpFe(CO)_2\}_2PMesH]Cl (7)$. The mass, IR and NMR spectra of 3, 4, 6 and 7 and the reactivity of the compounds 3a-c, as well as the results of the X-ray structure analysis of the first mixed alkyl-aryl-diferriophosphonium salt [$\{CpFe(CO)_2\}_2PCHR\}CH(2D)_2\}_2PCHR_2PHBPh_4 (3b')$, are reported and discussed.

Zusammenfassung

Diferriophosphonium-Salze mit einem Alkyl-Substituenten können auf zwei Arten synthetisiert werden. Die erste Methode ist die Eintopfreaktion über die Deprotonierung von [{CpFe(CO)_2}_PPhH]Cl (1) mit KO^tBu in THF bei -78° C zum instabilen Diferriophosphan-Komplex {CpFe(CO)_2}_PPh (2) und dessen Realkylierung mit RX (R = Me, CH_2Ph, CH_2COOEt; X = Cl, I), wodurch die offenen Diferriophenylalkylphosphonium-Salze [{CpFe(CO)_2}_PPhR]X (3a-c) entstehen. Durch Photolyse von 3a-c wird ein CO-Ligand eliminiert unter Bildung der geschlossenen Diferriophosphonium-Salze 4a-c mit einem verbrückenden CO-Liganden und einer Fe-Fe-Bindung. Die Deprotonierung der Salze 3a,b durch Basen ergibt die instabilen neutralen Diferriophenylphosphor-Ylide oder besser die μ_2 -Phosphaalken-Komplexe {CpFe(CO)_2}_PPh=CHR' (5a,b), die [CpFe(CO)_2]_2 eliminieren, wodurch die instabilen Phosphaalkene entstehen, die letztlich zu 1,3-Diphosphetanen dimerisieren. Die zweite, einfachere Methode zur Darstellung von Diferrioalkylphosphonium-Salzen ist die Reaktion von [CpFe(CO)_2]_2 mit RPCl₂ in Toluol. Das Phosphanfragment RPCl inseriert in die Fe-Fe-Bindung und es entstehen die Chlor-substituierten Diferriophosphonium-Salze [{CpFe(CO)_2}_PCIR]Cl (R = Ph, Me, ⁱPr, Cl) (6d-g) und [{CpFe(CO)_2}_PMesH]Cl (7). Die Massen-, IR- und NMR-Spektren von 3, 4, 6 und 7, die Reaktivität der Verbindungen 3a-c und die Ergebnisse der Röntgenstrukturanalyse des ersten gemischten Alkyl-aryl-diferriophosphonium-Salzes [{CpFe(CO)_2}_PPhCH_2Ph]BPh_4 (3b') werden berichtet und diskutiert.

Key words: Iron; Phosphorus; Carbonyl; Oxidative addition; Trimethylsilyl

1. Einleitung

Alkyl-substituierte Phosphonium-Salze des Typs $[Ph_3P-CH_2R]X$ dienen als Edukte zur Darstellung

von Phosphor-Yliden des Typs $Ph_3P=CHR$ [1,2]. Aufgrund der isolobalen Zusammenhänge von 7-Elektronen-Substituenten mit 17-Elektronen-Metallkomplexfragmenten [3] können kationische Übergangsmetall-Phosphan-Komplexe als metallierte Phosphonium-Salze aufgefaßt werden und sollten sich auch zu Metall-substituierten Phosphor-Yliden deprotonieren lassen. Solche Metallo-Ylide bieten ein neues elektron-

Correspondence to: Prof. Dr. I.-P. Lorenz.

^{*} Herrn Professor W. Preetz zum 60. Geburtstag am 21. Juni 1994 gewidmet.

isches und sterisches Potential, das für gezielte stereospezifische Wittig-Synthesen interessant sein könnte. Eine kleine Übersicht über die erwähnte Isolobal-Analogie beim Phosphor ist in Schema 1 dargestellt. Uber die Darstellung und vollständige Charakterisierung des ersten Monoferriophosphor-Ylids CpFe-(CO)(PBu₃)(PPh₂=CHCOOEt) wurde bereits kurz berichtet [4]; es wurde auch im Sinne der Wittig-Reaktion mit Benzaldehyd umgesetzt und das cis-trans Verhältnis der entstehenden Alkene bestimmt [5]. Erste Hinweise auf den Phosphoniumcharakter von kationischen Übergangsmetall-Phosphan-Komplexen erhielten wir bei der Charakterisierung von Di- und Triferriophosphonium-Salzen des Typs [{CpFe(CO)₂}₂-PPhR]X bzw. [{CpFe(CO)₂}₃PH]X (R = H, Ph, CH₂SiMe₃) [6]. Einige der Diferriophosphonium-Komplexe wurden früher dargestellt, als solche aber nicht erkannt [7,8] und deshalb nicht weiter eingesetzt. Im Falle von R = Ph wurde die Struktur durch eine Kristallstrukturanalyse belegt [6].

Ziel dieser Arbeit war es, gemischt-substituierte Diferrio-alkylphosphonium-Salze darzustellen, ihre Struktur zu bestimmen und ihre Reaktivität zu untersuchen. Über zwei Varianten zur Synthese solcher Verbindungen haben wir bereits berichtet; es ist einmal die Umsetzung von CpFe(CO)₂Cl mit Alkylphenyl-silylphosphanen zu [{CpFe(CO)₂}₂PPhR]Cl (R = Ph, CH₂SiMe₃, CH₃) [9], wobei sich die Darstellung und Handhabung dieser gemischten Silylphosphane oft als schwierig und unangenehm erweist. Die zweite Methode ist die Umsetzung von CpFe(CO)₂Cl mit dem einfach herzustellenden Bis(trimethylsilyl)phenylphosphan PhP(SiMe₃)₂, wobei man den P-H-funktionellen Komplex [{CpFe(CO)₂}₂PPhH]Cl in guter Ausbeute

R^{\\\'}

Phosphonium-Salz

CH₂R

Phosphan

Metallophosphan Phosphido-Komplex

Metallophosphonium-Salz

Phosphan-Komplexkation

Dimetallophosphan Phosphiniden-Komplex Schema 1.

Phosphorylid

Metallophosphorylid

Dimetallophosphorylid μ_2 -Phosphaalkenkomplex

erhält [6]. Diesen kann man durch einfache Deprotonierung und Realkylierung des intermediär entstehenden Diferriophosphans {CpFe(CO)₂}₂PPh in Arylalkyl-substituierte Diferriophosphonium-Salze [{CpFe-(CO)₂}₂PRPh]X (R = CH₂Ph, CH₂COOEt, Me) überführen, darüber wurde in [9] nur unvollständig berichtet. Eine dritte, neue und sehr einfache Methode zur Darstellung von Alkyl-funktionellen Diferriophosphonium-Salzen, die oxidative Additionsreaktion von Dichloralkylphosphanen mit [CpFe(CO)₂]₂ wird im folgenden vorgestellt. Analoge Reaktionen kennt man bereits von AsCl₃ und SbCl₃, die zu den entsprechenden Dichlorodiferrioarsonium- und -stibonium-Ionen führen [10,11]; in ähnlicher Weise wird PCl₃ von uns eingesetzt.

Mit den Alkyl-substituierten Verbindungen wurden Deprotonierungs-Versuche in α -Position zur Erzeugung von metallierten Phosphor-Yliden durchgeführt, über deren überraschende Ergebnisse im folgenden berichtet wird.

2. Ergebnisse und Diskussion

2.1. Darstellung und Eigenschaften

Bei der Umsetzung von CpFe(CO)₂Cl mit dem Silylphosphan PhP(SiMe₃)₂ entsteht der Komplex $[{CpFe(CO)_2}_2PPhH]Cl (1)$ in hoher Ausbeute (Gleichung (1)). Wird dieses P-H-funktionelle Salz bei -78°C in THF mit KO^tBu deprotoniert, so läßt sich die Bildung des instabilen, dunkelroten Diferriophenylphosphans $\{CpFe(CO)_2\}_2$ PPh (2) spektroskopisch und chemisch nachweisen. Wie die ³¹P-NMR-Spektren mit einer chemischen Verschiebung von 108 ppm zeigen, ist 2 bis -10° C stabil. Bei höheren Temperaturen zersetzt es sich zu nicht mehr nachweisbaren Folgeprodukten. Mit Alkylierungsmitteln RX ($R = Me, CH_2Ph$, CH_2COOEt , X = Cl, I) gelingt bei tiefen Temperaturen gemäß Gleichung (2) die gezielte Realkylierung zu den Alkyl-diferrio-phenylphosphonium-Salzen $[{CpFe(CO)_2}_2 PPhR]X$ (3a-c). Diese Verbindungen sind gelb, luft- und feuchtigkeitsbeständig und in allen polaren Lösungsmitteln wie z.B. Aceton und CH₃CN löslich. Sie sind jedoch unlöslich in Ethern, Aromaten und Alkanen. Aus einer methanolischen Lösung läßt sich **3b** mit NaBPh₄ umsalzen. Das Tetraphenylborat **3b**' ist in Aceton löslich. Durch langsames Verdunsten des Acetons fällt **3b**' kristallin an. Durch Umkristallisieren aus Dichlormethan bei -30° C bilden sich für die Röntgenstrukturanalyse geeignete Kristalle.

Mit den Verbindungen 3a-c liegen nun geeignete Substrate für metallorganische Wittig-analoge Reagenzien vor, sie besitzen in α -Position Methylengruppen, die wie herkömmliche Alkylphosphonium-Salze ebenfalls Deprotonierungsreaktionen, in diesem Fall zu Metallophosphor-Yliden, eingehen sollten. Bei gezielten Deprotonierungsversuchen mit 3a-c beobachtet man jedoch, daß bevorzugt [CpFe(CO)₂]₂ eliminiert wird, und daß die gemäß Gleichung (3) freigesetzten Phosphaalkene zu 1,3-Diphosphetanen dimerisieren.

Lediglich bei sehr tiefen Temperaturen (-80° C) lassen sich die Deprotonierungsprodukte **5a,b** durch ³¹P-NMR-Spektroskopie nachweisen. Die Verbindungen **5a,b** bezeichnet man aufgrund ihrer Eliminierungstendenz besser als über zwei Eisenzentren gebundene μ_2 -Phosphaalken-Komplexe. Ihre chemischen Verschiebungen im ³¹P{¹H}-NMR-Spektrum sind in Tabelle 1 enthalten. Die bei Temperaturen ab -70° C durch Abspaltung von [CpFe(CO)₂]₂ entstehenden freien Phosphaalkene PhP=CHR' sind aufgrund ihrer geringen sterischen Abschirmung kinetisch nicht stabil und somit nicht faßbar; Abfangreaktionen sind geplant. Sie dimerisieren sofort zu den entsprechenden

1,3-Diphosphetanen [PhPCHR']₂. Im Falle von $\mathbf{R}' = \mathbf{Ph}$ gelang es, das 1,2,3,4-Tetraphenyl-1,3-diphosphetan aus der Reaktionslösung von **3b** bzw. **5b** massenspektrometrisch nachzuweisen.

Die offenen Verbindungen 3a-c sind außerordentlich photolabil. Bereits am Tageslicht, besser und schneller in einer Photolyseapparatur wird ein CO-Ligand abgespalten, wobei gemäß Gleichung (4) die μ_2 -CO-verbrückten geschlossenen Verbindungen [μ -CO{CpFe(CO)}₂PPhR]X (4a-c) mit einer Fe-Fe-Bindung entstehen. Es handelt sich um tiefrote Feststoffe, die nur noch in polaren Lösungsmitteln wie Methanol und Aceton löslich sind. In einer früheren Arbeit wurden sie als Nebenprodukte nur IR- und ³¹P-NMRspektroskopisch charakterisiert [9]. Nun gelang ihre Isolierung und vollständige Charakterisierung.

Um die beiden Silvlmethoden zur Darstellung von Diferrio-alkylphosphonium-Salzen zu umgehen, und eine weitere Variation der P-Substituenten zu ermöglichen, wurde $[CpFe(CO)_2]_2$ auch mit RPCl₂ umgesetzt (R = Ph, Me, ⁱPr, Cl, Mes). In Analogie zu den Umsetzungen von [CpFe(CO)₂]₂ mit AsCl₃ und SbCl₃ [10,11] resultiert auch bei dessen Umsetzung mit RPCl₂ (R = Cl, Ph, Me, Pr) in Toluol bei 60°C eine allmähliche Niederschlagsbildung. Das Phosphan spaltet ein Chlorid-Ion ab, das RPCI-Fragment inseriert in die Fe-Fe-Bindung, wobei die verbrückenden CO-Gruppen in terminale übergehen und die neuen Phosphonium-Salze 6d-g entstehen. Im Prinzip handelt es sich um eine oxidative Additionsreaktion von RPCl₂ an $[CpFe(CO)_2]_2$ unter Bildung der gelben Diferriophosphonium-Salze [{CpFe(CO)₂}, PRCl]Cl (6d-g), die im Gegensatz zu 3a-c anstelle eines Organyl-Substituenten einen Chlor-Substituenten tragen (Gleichung (5)). Die Verbindungen 6d-g sind sehr schwer löslich in allen Solventien mit Ausnahme von Aceton und Methanol, wo sie etwas löslich sind, und DMSO, das 6d-g gut löst. Sie lassen sich wesentlich schwerer photolytisch decarbonylieren als 3a-c und sind an Luft nur kurze Zeit stabil. Die Deprotonierung der P-Cl-funktionellen Diferriophosphonium-Salze 6e,f zu den analogen Diferriophosphor-Yliden bzw. μ_2 -Phosphaalken-Komplexen { $CpFe(CO)_2$ } PCICR'₂ (R' = H, CH₃), ist möglich; die Untersuchungen dazu sind noch nicht abgeschlossen. Gleiches gilt für die Chloridabstraktion bei den Letztgenannten, um zu bisher unbekannten Diferriophosphonium-Salzen [{CpFe(CO)₂}₂P=CR'₂}]X (R' = H, Me) zu gelangen; über diese Ergebnisse wird an anderer Stelle berichtet.

Die Umsetzung von Dichlormesitylphosphan mit $[CpFe(CO)_2]_2$ verläuft überraschend; der Chlorid-Substituent am Phosphor wird bereits durch geringste Feuchtigkeitsspuren vollständig gegen ein Proton ausgetauscht, wobei das zu Verbindung 1 analoge P-H-funktionelle Diferriomesitylphosphonium-Salz [{CpFe

 $(CO)_2$ PMesH]Cl (7) entsteht (Gleichung (6)). Dies entspricht einer Reduktion; die beiden Elektronen liefert vermutlich das Dimere $[CpFe(CO)_2]_2$, da in der Reaktionslösung CpFe(CO)₂Cl nachgewiesen werden kann. Der größere sterische Anspruch der Mesitylgruppe im Vergleich zu den "normalen" o.g. Resten R in 6d-g könnte die Bildung von 7 zusätzlich begünstigen. Einen ähnlichen, aber hydrolytisch bedingten Austausch haben wir in Gleichung (1) kennengelernt und auch beim Umsalzen des Tetraferrioarsonium-Salzes [{CpFe(CO)₂}₄As]Cl, wobei [{CpFe(CO)₂}₃As-OH]BPh₄ entsteht, bereits beobachtet [12]. Wie 1 läßt sich auch 7 in THF mit DBU gemäß Gleichung (7) deprotonieren, wobei das dunkelbraune Diferriophosphan $\{CpFe(CO)_2\}_2$ PMes (8) entsteht, welches NMRspektroskopisch nachgewiesen werden konnte. Es ist bei Raumtemperatur einige Zeit haltbar; seine Realkylierung mit z.B. MeI verläuft jedoch nicht glatt, da das freie Elektronen-Paar durch die großen Reste CpFe(CO)₂ und Mes zu stark abgeschirmt ist. Analoge Reaktionen mit stärkeren Alkylierungsmitteln wie CF₁SO₃Me bzw. Oxidationsmitteln sind noch nicht abgeschlossen [13]. 8 gehört prinzipiell zu den von Huttner et al. erschlossenen Phosphiniden-Komplexen [14,15], bei denen aber der RP-Brücken-Ligand zwischen zwei 16-VE-Komplexfragmenten wie CpMn-

RP $L_n M^2$ $M^2 L_n$

 $L_n M^1 = 16 VE-Komplex fragment$

z.B. CpMn(CO)₂ Schema 2. $(CO)_2$ als 3c4e-Bindungssystem fungiert, während er hier als 2-Elektronen-Donor (3c2e-System) gegenüber den beiden 17-VE-Komplexfragmenten CpFe(CO)₂ auftritt (vgl. Schema 2).

2.2. Spektren

Die spektroskopischen Daten der Komplexe 1-5 sind in Tabelle 1 zusammengetragen. Zum Vergleich ist Verbindung 1 [6] mit aufgeführt. Das ³¹P{¹H}-NMR-Signal des Deprotonierungsproduktes 2, das aus 1 hervorgeht, liegt stark tieffeldverschoben bei 108.6 ppm (-10°C). Die IR-Spektren von 3a-c weisen im Carbonylbereich jeweils vier Banden auf, deren Lage zwischen 1980 und 2050 cm⁻¹ typisch für terminale CO-Gruppen ist. 3c weist zusätzlich noch eine (CO)-Bande der Ethoxycarbonylfunktion bei 1719 cm^{-1} auf. Die ³¹P{¹H}-NMR-Signale liegen als Singuletts mit zunehmenden -I-Effekt der Substituenten R von 33.3 auf 66.8 ppm steigend im Erwartungsbereich. Die ¹H-NMR-Spektren zeigen die typischen Signale für die Phenylprotonen zwischen 7.2 und 7.7 ppm sowie die Dubletts für die Cyclopentadienylprotonen zwischen 5.06 und 5.28 ppm mit einer Kopplungskonstanten $^{3}J(PH)$ von 1.3–1.4 Hz. In den $^{13}C{^{1}H}$ -NMR-Spektren von 3a-c werden die Signale für die Cyclopentadienylgruppe bei 89-90 ppm gefunden. Die bei -80°C gemessenen ³¹P{¹H}-NMR-Spektren der aus **3a,b** durch Deprotonierung in α -Position erhaltenen Diferrio- μ_{2} phosphaalkene 5a,b zeigen Singuletts bei 170.6 bzw. 172.7 ppm und damit eine extreme Tieffeldverschiebung an. Dies kann mit den neuen Bindungverhältnissen am Phosphor, die nicht mehr einem Phosphonium-Ion, sondern einem μ_2 -Phosphaalken entsprechen, begründet werden.

Bei den CO-verbrückten Verbindungen 4a-c findet man im IR-Spektrum erwartungsgemäß nur noch drei Carbonylschwingungen, zwei im terminalen Bereich zwischen 1986 und 2030 cm⁻¹ und eine im verbrückenden Bereich zwischen 1819 und 1825 cm⁻¹. In den ¹H-NMR-Spektren von 4a-c sind die δ -Werte der Cyclopentadienylprotonen im Vergleich zu den offenen Verbindungen 3a-c um ca. 0.4 ppm tieffeldverschoben; die Kopplungskonstanten fallen unter 1 Hz (0.98 Hz bei 4b). Auch die δ -Werte der Methyl- bzw. Methylenprotonen der direkt am Phosphor gebundenen Gruppen erfahren im Vergleich zu denen von 3a-c eine Tieffeldverschiebung um ca. 0.6 ppm. Die ³¹P{¹H}-NMR-Signale von 4a-c weisen eine extreme Tieffeldverschiebung gegnüber den offenen Komplexen 3a-c auf. Die Signale erscheinen in einem relativ engen Bereich bei 242-255 ppm. Die Ursache dafür liegt in dem extrem kleinen Winkel am Phosphor $(Fe-P-Fe = 73^{\circ})$ und in der Fe-Fe-Bindung (Fe-Fe =2.631 Å) in Verbindungen des Typs 4 [9]. In den

¹³C{¹H}-NMR-Spektren findet man wie bei den ¹H-NMR-Spektren eine Tieffeldverschiebung der Cyclopentadienyl-Kohlenstoffatome; sie beträgt hier 1 ppm.

In Tabelle 2 sind die spektroskopischen Daten der Komplexe 6-8 zusammengestellt. Die P-Cl-funktionellen Verbindungen 6d-f zeigen im IR-Spektrum wiederum vier terminale CO-Schwingungen zwischen 1999 und 2065 cm⁻¹. Bei 6e liegen jeweils zwei Schwingungen so nahe beieinander, so daß sie nur als zwei breite Signale registriert werden. Das symmetrische Dichlorphosphonium-Salz 6g besitzt vermutlich ideale C_{2v} -Symmetrie, so daß nur zwei CO-Schwingungen bei 2020 und 2056 cm⁻¹ registriert werden. Verbindung 7 ist mit 1 vergleichbar, so daß ähnliche CO-Frequenzen gefunden werden. Nur die beiden niedrigsten Wellenzahlen bei 2000 und 2010 cm⁻¹ in 1 verschmelzen zu einem breiten Signal bei 2005 cm⁻¹ in 7. Die P-H-Schwingung liegt ähnlich wie die von 1 bei 2338 cm⁻¹. Aufgrund der hohen Elek-

TABELLE 1. Spektroskopische Daten von 1-5

	IR (CO) a	³¹ P{ ¹ H} ^b	¹ H ^c	¹³ C(¹ H) °
1	2050, 2034, 2010, 2000; 2337 (PH)	1.3 ¹ J(PH) = 335	7.2–7.5 (m, Ph), 6.06 (d, ${}^{1}J(PH) = 335$), 4.67 (d, ${}^{3}J(PH) = 1.4$, Cp)	212.4, 212.0 (d, ${}^{2}J(PC) = 20$, CO), 142.8 (d, ${}^{1}J(PC) = 26.5$, <i>ipso</i> -Ph), 131.8 (d, ${}^{2}J(PC) = 7.6$, <i>o</i> -Ph), 130.5 (d, ${}^{4}J(PC) = 2.6$, <i>p</i> -Ph), 129.8 (d, ${}^{3}J(PC) = 10.1$, <i>m</i> -Ph), 89.3 (d, ${}^{3}J(PC) = 2$, Cp)
2		108.6 (-10°C)		
3a	2046, 2030, 2000, 1987	33.3	7.2–7.7 (m, Ph), 5.19 (d, ${}^{3}J(PH) = 1.23$, Cp, 2.33 (d, ${}^{2}J(PH) = 8.6$, CH ₃)	129.7–130.4 (m, Ph), 88.9 (Cp)
3b	2043, 2027, 1994, 1983	66.8	6.9–7.7 (m, Ph), 5.06 (d, ${}^{3}J(PH) = 1.4$, Cp), 4.09 (${}^{2}J(PH) = 6.8$, CH ₂)	213.8, 214.2 (CO), 139.8, 128.7–132.1 (m, Ph), 89.1 (Cp), 44.9 (d, ${}^{2}J(PC) = 6.8$, CH ₂)
3c	2050, 2033, 2004, 1991, 1725	50.5	7.3-7.7 (m, Ph), 5.28 (d, ${}^{3}J(PH) = 1.4$, Cp), 4.27 (q, ${}^{3}J(HH) = 7.2$, CH ₂ CH ₃), 3.75 (d, ${}^{2}J(PH) = 9.9$, PCH ₂), 1.29 (t, ${}^{3}J(HH) = 7.2$, CH ₂ CH ₃)	128.9–133.0 (m, Ph), 89.1 (Cp)
4a	2024, 1977, 1830	250.0	7.3–8.0 (m, Ph), 5.52 (Cp), 2.95 (d, $^{2}J(PH) = 12.2$, CH ₃)	129.4–133.5 (m, Ph), 90.1 (Cp)
4b	2027, 2011, 1828	254.2	7.4–7.8 (m, PPh), 7.0–7.3 (m, PCH ₂ Ph), 5.59 (d, ³ J(PH) = 0.98, Cp), 4.69 (d, ² J(PH) = 10.0, CH ₂)	128.6–136.0 (m, Ph), 90.3 (Cp)
4 c	2030, 2005, 1825, 1715	242.7	7.3–7.8 (m, Ph), 5.64 (Cp), 3.95 (q, ${}^{3}J$ (HH) = 7.0, CH ₂ CH ₃), 3.9 (d, ${}^{2}J$ (PH) = 13, PCH ₂), 0.99 (t, ${}^{3}J$ (HH) = 7.0, CH ₂ CH ₃)	128.1–135.0 (m, Ph), 90.2 (Cp)
5a		170.6 (– 80°C)		
5b		172.7 (-80°C)		

^a In CH₃CN (1) bzw. in CH₂Cl₂ (3a-c, 4a-c) (cm⁻¹).

^b In CH₃CN (1), THF (2, 5a,b), CH₂Cl₂ (3a-c), MeOH (4a-c) δ (ppm), J (Hz), bei 1 gekoppelt.

^c In CD₃CN (1), d_4 -MeOH (3a—c, 4a–c) δ (ppm), J(Hz).

tronegativität der Cl-Atome sind die Werte der ³¹P{¹H}-NMR-Signale von 6d-g gegenüber denen von 3a-c stark tieffeldverschoben und liegen zwischen 161 und 227 ppm. Beim Dichlorderivat 6g verschiebt sich das Signal sogar auf 358.5 ppm. Die P-H-funktionelle Verbindung 7 weist dagegen eine Hochfeldverschiebung von -57 ppm mit einer Kopplungskonstanten ${}^{1}J(PH)$ von 330 Hz auf, sie gleicht der von 1. Ebenso wie bei der Deprotonierung von 1 zu 2 beobachtet man auch bei der Deprotonierung von 7 zu 8 eine bemerkenswerte Tieffeldverschiebung des Signals im ³¹P-NMR-Spektrum auf 26 ppm. Die ¹H- und ¹³C-NMR-Daten von 8 gleichen denen von 7. Nur die Signale der Mesitvlkohlenstoffatome von 8 sind gegenüber denen von 7 etwas tieffeldverschoben. Mit Ausnahme von 6d liegen die ¹H-NMR-Verschiebungen der Cyclopentadienyl-Protonen von 6e-g stark tieffeldverschoben bei 5.1 bis 5.8 ppm. Die ¹³C-NMR-Werte dieser Gruppe werden zwischen 85.5 und 87.1 ppm registriert, eine Ausnahme bildet das Dichlorderivat 6g, dessen Signal aufgrund zweier elektronenziehender Substituenten deutlich tieffeldverschoben (90.1 ppm) ist. Die ¹H- bzw. ¹³C{¹H}-NMR-Daten von 7 liegen ähnlich wie die von 1 bei 4.9 bzw. 88.7 ppm für die Cp-Gruppe.

2.3. Röntgenstrukturanalyse von 3b'

Am Beispiel des Tetraphenylborats $[{CpFe(CO)_2}_2-PPhCH_2Ph]BPh_4$ (3b') wurde zur vollständigen Charakterisierung eines Aryl-alkyl-diferriophosphonium-Salzes eine Röntgenstrukturanalyse durchgeführt (vgl. Abb. 1 und Tab. 3). Das Salz kristallisiert mit *ca*. 1.25 Solvensmolekülen Dichlormethan aus, d.h. die Positionen in der Elementarzelle sind nicht vollständig

TABELLE	2.	Spektroskopische	Daten	von	6-8
---------	----	------------------	-------	-----	-----

Abb. 1. Molekülstruktur von 3b' (nur Kation).

besetzt [21]. Die beiden Eisen-Atome besitzen pseudotetraedrische Koordinationssphären, die über das Phosphoratom eckenverknüpft sind. Der Fe-P-Abstand ist mit 2.30 Å genauso groß wie der im Diphenyldiferriophosphoniumderivat [6]. Der Abstand der beiden Fe-Atome liegt bei 4.00 Å und damit außerhalb einer Fe-Fe-Bindung. Die tetraedrische Umgebung des Phosphoratoms ist stark verzerrt. Wegen des großen Platzbedarfs der metallorganischen Substituenten ist der Winkel Fe-P-Fe mit 119.7° relativ groß. Naturgemäß verringert sich der Winkel C(7)-P-C(8) auf 104.6°. Der Winkel am Methylenkohlenstoffatom P-C(7)-C(1) ist aufgrund der sperrigen Reste

11100	EEE 2. Spekiloskoj		•	
	IR (CO) ^a	³¹ P{ ¹ H}	¹ H ^b	¹³ C{ ¹ H} ^b
6d	1999, 2015, 2043, 2059	$227 \left(\mathrm{CH}_{2} \mathrm{Cl}_{2} \right)$	6.8–7.2 (Ph), 4.70 (Cp)	210.0 (CO), 120.0–129.3 (Ph), 87.1 (Cp)
6e	2007, 2054	161 (DMSO) 174 (THF)	1.7 (Me), 5.7 (Cp)	86.5 (Cp)
6f	2005, 2048 2052, 2065	181 (DMSO) 212 (CH ₃ CN)	5.8 (Cp), 2.7 (CH), 1.4 (Me)	209.9 (d, ${}^{3}J(CP) = 27$, CO), 86.5 (Cp), 35.1 (d, ${}^{1}J(CP) = 37$, CH), 17.0 (d, ${}^{2}J(CP) = 42$, CH ₃)
6g	2020, 2056	359 (CD ₃ CN)	5.1 (Cp)	204.2 (CO), 90.1 (Cp)
7	2005, 2031, 2050; 2338 (PH)	$-57.0 (CD_3CN)$ d, ¹ J(PH) = 330	7.0–7.2 (Mes), 4.9 (Cp), 2.3 (Me)	209.6 (d, ³ <i>J</i> (CP) = 20, CO), 123.4–135.5 (Mes), 88.7 (Cp), 19.0 (Me)
8		25.5 (THF) 26.5 (DMSO-d ₆)	7.0–7.2 (Mes), 5.0 (Cp), 2.25 (Me)	128.1–141.2 (Mes), 88.5 (Cp), 20.7 (Me)

^a In CH₂Cl₂ (6d,g, 7) bzw. in CH₃CN (6e,f).

^b In CD₃CN (6d,g, 7) bzw. in DMSO-d₆ (6e,f, 8).

TABELLE 3. Ausgewählte Bindungslängen [Å] und -winkel [°] von 3b' (Standardabweichung in Klammern)

Bindung		Winkel	
Fe(1)-P(1)	2.306(4)	Fe(1)-C(25)-O(3)	176.9(10)
Fe(2)-P(1)	2.302(3)	Fe(1)-C(26)-O(4)	174.8(10)
Fe(1)-C(25)	1.790(11)	Fe(2)-C(24)-O(1)	175.7(10)
Fe(1)-C(26)	1.776(10)	Fe(2)C(27)O(2)	177.9(10)
Fe(2)-C(24)	1.764(11)	Fe(1)-P(1)-Fe(2)	119.7(1)
Fe(2)-C(27)	1.771(11)	C(25)-Fe(1)-C(26)	97.3(5)
O(1)-C(24)	1.149(13)	C(24) - Fe(2) - C(27)	96.2(5)
O(2)-C(27)	1.154(14)	C(7)-P(1)-C(8)	104.6(5)
O(3)-C(25)	1.130(13)	Fe(1) - P(1) - C(7)	103.4(3)
O(4)-C(26)	1.130(13)	Fe(1) - P(1) - C(8)	105.2(4)
P(1)-C(7)	1.885(10)	Fe(2) - P(1) - C(7)	113.2(3)
P(1)-C(8)	1.846(11)	Fe(2) - P(1) - C(8)	109.5(3)
C(7)-C(1)	1.509(15)	P(1)-C(7)-C(1)	120.2(7)
$Fe(1) \cdots Fe(2)$	4.000(4)	C(24) - Fe(2) - P(1)	92.5(4)
		C(25)-Fe(1)-P(1)	89.0(4)
		C(26)-Fe(1)-P(1)	93.1(3)
		C(27)-Fe(2)-P(1)	91.2(4)

gegenüber dem Tetraederwinkel auf 120.2° stark aufgeweitet. Alle anderen Bindungsabstände und -winkel liegen im üblichen Bereich; eine Auswahl ist in Tabelle 3 zusammengestellt.

3. Experimenteller Teil

Alle Arbeiten wurden in vakuumgetrockneten Glasgeräten unter Argon durchgeführt. Alle Lösungsmittel wurden üblicherweise getrocknet, destilliert und Argon-gesättigt eingesetzt. Die Ausgangsverbindung 1 [6], die Phosphane PhP(SiMe₃)₂ [16], PCl₂Mes [17], PCl₂iPr [18] und die metallorganischen Edukte [CpFe(CO)₂]₂ [19] und CpFe(CO)₂Cl [20] wurden nach Literaturangaben dargestellt. Für die spektroskopischen Messungen standen folgende Geräte zur Verfügung: IR: Nicolet 520 FT-IR-Spektrometer; ³¹P-NMR: Jeol GSX 270; ¹H- und ¹³C-NMR: Jeol EX 400. MS: Varian MAT 711 A; Röntgenstrukturanalyse: Siemens P4.

3.1. Darstellung von $[{CpFe(CO)_2}_2PPhR]X$ (R = Me, CH_2Ph , CH_2COOEt ; X = Cl, I) (3a-c)

Allgemeine Arbeitsvorschrift: Zu einer Suspension von ca. 4 mmol [{CpFe(CO)₂}₂PPhH]Cl (1) in 5 ml THF werden bei -78° C ca. 4 mmol KO^tBu gegeben. Dabei bildet sich aus 1 eine dunkelbraunrote Lösung von intermediärem 2. Zu dieser Lösung gibt man 4 mmol des entsprechenden Alkylierungsmittels RX. Die Lösung läßt man nun auf Raumtemperatur erwärmen und rührt noch ca. 1–2 Stunden weiter, bis eine hellbraune Suspension entsteht. Von dieser wird THF destillativ i.V. entfernt. Der Rückstand wird in 20 ml Dichlormethan aufgenommen und über eine kurze Kieselgel-Säule filtriert. Die Produkte 3a-c werden aus dem Filtrat mit Diethylether als gelbe Feststoffe gefällt, abfiltriert, mit Toluol und Petrolether gewaschen und i.V. getrocknet.

3.1.1. Bis[cyclopentadienyldicarbonylferrio]methylphenylphosphoniumiodid (3a)

Ansatz 1.89 g (3.79 mmol) 1, 0.54 g (3.80 mmol) MeI und 0.43 g (3.83 mmol) KO^tBu. Ausbeute 1.59 g (69.4%). Schmp. 183°C. FD-MS (m/e) 477 [M – I]⁺. Elemental analysis: C₂₁H₁₈Fe₂O₄PI (603.94) gef. (ber.) (%) C 50.0 (49.8), H 3.1 (3.0), I 22.0 (22.1).

3.1.2. Bis[cyclopentadienyldicarbonylferrio]benzylphenylphosphoniumchlorid (3b)

Ansatz 1.80 g (3.61 mmol) 1, 0.46 g (3.63 mmol) PhCH₂Cl und 0.41 g (3.65 mmol) KO^tBu. Ausbeute 1.76 g (83.0%). Schmp. 193°C. FD-MS (m/e) 553 [M – Cl]⁺. Elemental analysis: C₂₇H₂₂Fe₂O₄PCl (588.59) gef. (ber.) (%) C 55.5 (55.1), H 3.5 (3.7), Cl 6.0 (6.5).

3.1.3. Bis[cyclopentadienyldicarbonylferrio](ethoxycarbonylmethyl)phenylphosphoniumchlorid (3c)

Ansatz 2.18 g (4.37 mmol) 1, 0.54 g (4.41 mmol) EtOOCCH₂Cl und 0.49 g (4.37 mmol) KO^tBu. Ausbeute 1.23 g (48.2%). Schmp. 134°C. FD-MS (m/e) 584 [M - Cl]⁺. Elemental analysis: C₂₄H₂₂Fe₂O₆PCl (584.55) gef. (ber.) (%) C 49.0 (49.3), H 3.5 (3.8), Cl 6.7 (6.0).

3.2. Darstellung von $[{CpFe(CO)_2}_2PPhCH_2Ph]BPh_4$ (3b')

Zur Gewinnung von Einkristallen für die Röntgenstrukturanalyse löst man 200 mg (0.34 mmol) **3b** in 2 ml Methanol und fügt 0.4 g NaBPh₄ hinzu. Dabei fällt das Tetraphenylborat **3b'** als gelber Niederschlag aus. Durch Versetzen mit Aceton erhält man wieder eine klare Lösung, in der sich durch langsames Verdunsten des Acetons gelbe Kristalle bilden. Diese werden aus Dichlomethan bei -30° C umkristallisiert, abfiltriert und dreimal mit kaltem Methanol gewaschen. **3b'** kristallisiert mit *ca.* 1.25 Molekülen Dichlormethan aus.

Ausbeute 292 mg (88.1%). Schmp. 153°C. Elemental analysis: $C_{51}H_{42}BFe_2O_4P \cdot 1.25 CH_2Cl_2$ (974.29) gef. (ber.) (%) C 64.02 (64.13), H 4.38 (4.58).

3.3. Darstellung von $[(\mu-CO){CpFeCO}_2PPhR]X$ (R = Me, CH₂Ph, CH₂COOEt; X = Cl, I) (4a-c)

Allgemeine Arbeitsvorschrift: Man bestrahlt eine Lösung von 1–2 mmol [{CpFe(CO)₂}₂PPhR]X (3a-c)

TABELLE 4. Kristall- und Meß-Daten von 3b' a

Empirische Formel $C_{53}H_{46}BCl_4Fe_2O_4P$ Farbe; Formbraune PrismenKristallgröße (mm)0.26 0.26 0.22Kristallgröße (mm)0.26 0.26 0.22KristallsystemMonoklinRaumgruppe P_{2_1}/c Elementarzelle $a = 14.315(11)$ Å $b = 19.484(14)$ Å $c = 17.622(14)$ Å $\beta = 98.53(2)^{\circ}$ Volumen4861(10) Å^3Z4MG1042.2Dichte (ber.)1.424 g cm ⁻³ Absorptionskoeffizient0.895 mm ⁻¹ $F(000)$ 2144Daten-SammlungDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073$ Å)Temperatur213 KMonochromatorHochorientierter Graphitkristall2 θ Bereich3.0 bis 50.0°Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Bereich (ω)1.00°Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener7687Unabhängige Reflexe7358 ($R(int) = 5.05$ %)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723LösungDirekte MethodenVerfeinerungSiemens shELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungSiemens shELXTL PLUS (PC Version)LösungDirekte Methoden <th></th> <th></th>		
Farbe; Formbraune PrismenKristallgröße (mm) $0.26 \cdot 0.22$ KristallsystemMonoklinRaumgruppe $P2_1/c$ Elementarzelle $a = 14.315(11)$ Å $b = 19.484(14)$ Å $c = 17.622(14)$ Å $\beta = 98.53(2)^{\circ}$ Volumen $4861(10)$ Å ³ Z4MG 1042.2 Dichte (ber.) 1.424 g cm $^{-3}$ Absorptionskoeffizient 0.895 mm $^{-1}$ $F(000)$ 2144 Daten-SammlungDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073$ Å)Temperatur 213 KMonochromatorHochorientierter Graphitkristall 2θ Bereich 3.0 bis 50.0° Scan Typ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00° /min in ω Scan Bereich (ω) 1.00° Standard Reflexe 3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener 7687 Unabhängige Reflexe 7687 Unabhängige Reflexe 7687 Unabhängige Reflexe 7687 Unabhängige Reflexe $5iemens$ shELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungDirekte MethodenVerfeinerungBiockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter Parameter 886 R Index (alle Daten) $R = 6.42\%, Rw = 11.31\%$	Empirische Formel	$C_{53}H_{46}BCl_4Fe_2O_4P$
Kristallgröße (mm) $0.26 \cdot 0.26 \cdot 0.22$ KristallsystemMonoklinRaumgruppe $P_{2_1/c}$ Elementarzelle $a = 14.315(11)$ Å $b = 19.484(14)$ Å $c = 17.622(14)$ Å $\beta = 98.53(2)^{\circ}$ Volumen4861(10) Å^3Z4MG1042.2Dichte (ber.)1.424 g cm $^{-3}$ Absorptionskoeffizient0.895 mm $^{-1}$ $F(000)$ 2144Daten-SammlungDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073$ Å)Temperatur213 KMonochromatorHochorientierter Graphitkristall2 θ Bereich3.0 bis 50.0°Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Bereich (ω)1.00°Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeTeflexe7687Unabhängige Reflexe7588 (R(int) = 5.05 %)Beobachtete Reflexe4655 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723LösungDirekte MethodenVerfeinerungBiockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter Parameter586R Index (alle Daten) $R = 6.42\%, Rw = 1$	Farbe; Form	braune Prismen
KristallsystemMonoklinRaumgruppe $P2_1/c$ Elementarzelle $a = 14.315(11)$ Å $b = 19.484(14)$ Å $c = 17.622(14)$ Å $\beta = 98.53(2)^{\circ}$ Volumen $486(100)$ Å ³ Z4MG1042.2Dichte (ber.) 1.424 g cm $^{-3}$ Absorptionskoeffizient 0.895 mm $^{-1}$ $F(000)$ 2144 Daten-SammlungDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073$ Å)Temperatur 213 KMonochromatorHochorientierter Graphitkristall20 Bereich 3.0 bis 50.0° Scan Geschwindigkeitvariabel; 2.50 bis 60.00° /min in ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00° /min in ω Scan Bereich (ω) 1.00° Standard Reflexe 3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerTestis (Kint) = 5.05 %)Beobachtete Reflexe 7687 Unabhängige Reflexe 7358 ($R(int) = 5.05$ %)Beobachtete Reflexe 465 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter 786 Parameter 586 R Index (alle Daten) $R = 6.42\%, Rw = 11.31\%$	Kristallgröße (mm)	0.26 • 0.26 • 0.22
Raumgruppe $P2_1/c$ Elementarzelle $a = 14.315(11) \text{ Å}$ $b = 19.484(14) \text{ Å}$ $c = 17.622(14) \text{ Å}$ $\beta = 98.53(2)^{\circ}$ Volumen $4861(10) \text{ Å}^3$ Z4MG 1042.2 Dichte (ber.) 1.424 g cm^{-3} Absorptionskoeffizient 0.895 mm^{-1} $F(000)$ 2144 Daten-SammlungDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073 \text{ Å}$)Temperatur 213 K MonochromatorHochorientierter Graphitkristall 2θ Bereich $3.0 \text{ bis } 50.0^{\circ}$ Scan Typ ω Scan Geschwindigkeitvariabel; $2.50 \text{ bis } 60.00^{\circ}/\text{min in } \omega$ Scan Bereich (ω) 1.00° Standard Reflexe $3 \text{ nach je 100 gemessenen Reflexen}$ Index Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener 7687 Unabhängige Reflexe 7687 UnabhängigDirekte MethodenVerfeinerungSiemens shELXTL PLUS (PC Version)LösungDirekte Methoden	Kristallsystem	Monoklin
Elementarzelle $a = 14.315(11)$ Å $b = 19.484(14)$ Å $c = 17.622(14)$ Å $\beta = 98.53(2)^{\circ}$ Volumen4861(10) Å ³ Z4MG1042.2Dichte (ber.)1.424 g cm $^{-3}$ Absorptionskoeffizient0.895 mm $^{-1}$ $F(000)$ 2144Daten-SammlungDiffraktometerStrahlungMoK α ($\lambda = 0.71073$ Å)Temperatur213 KMonochromatorHochorientierter Graphitkristall2 θ Bereich3.0 bis 50.0°Scan Typ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Bereich (ω)1.00°Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener Reflexe7687Unabhängige Reflexe7358 (R(int) = 5.05 %)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723Lösung Wasserstoff-AtomeDirekte MethodenVerfeinerungBiockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-Atome ParameterReiter-Modell, fixiertes U_i Anzahl verfeinerter Parameter586R Index (alle Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Raumgruppe	$P2_1/c$
$b = 19.484(14) \text{ Å}$ $c = 17.622(14) \text{ Å}$ $\beta = 98.53(2)^{\circ}$ Volumen $4861(10) \text{ Å}^{3}$ Z 4 MG 1042.2 Dichte (ber.) 1.424 g cm^{-3} Absorptionskoeffizient 0.895 mm^{-1} F(000) 2144 Daten-Sammlung Diffraktometer Siemens P4 Strahlung MoK α ($\lambda = 0.71073 \text{ Å}$) Temperatur 213 K Monochromator Hochorientierter Graphitkristall 2 θ Bereich 3.0 bis 50.0° Scan Typ ω Scan Geschwindigkeit variabel; 2.50 bis 60.00°/min in ω Scan Bereich 3.0 bis 50.0° Scan Typ ω Scan Geschwindigkeit variabel; 2.50 bis 60.00°/min in ω Scan Bereich 0 $\leq h \leq 16, 0 \leq k \leq 22, -20 \leq l \leq 19$ Anzahl gemessener Reflexe 7687 Unabhängige Reflexe Siemens sHELXTL PLUS (PC Version) Lösung Direkte Methoden Verfeinerung Verfeinerung Wasserstoff-Atome Anzahl verfeinerter Parameter S866 R Index (alle Daten) R = 6.42\%, Rw = 11.31\% R Index (alle Daten) R = 0.17\%, Rw = 11.90\%	Elementarzelle	a = 14.315(11) Å
$c = 17.622(14) Å$ $\beta = 98.53(2)^{\circ}$ Volumen4861(10) Å ³ Z4MG1042.2Dichte (ber.)1.424 g cm ⁻³ Absorptionskoeffizient0.895 mm ⁻¹ $F(000)$ 2144Daten-SammlungDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073 Å$)Temperatur213 KMonochromatorHochorientierter Graphitkristall20 Bereich3.0 bis 50.0°Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Bereich (ω)1.00°Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723LösungDirekte MethodenVerfeinerungBiockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter7866R Index (beobachtete Daten)R = 6.42\%, Rw = 11.31\%R Index (alle Daten)R = 10.17\%, Rw = 11.90\%		b = 19.484(14) Å
$\beta = 98.53(2)^{\circ}$ Volumen $4861(10)$ Å ³ Z4MG 1042.2 Dichte (ber.) 1.424 g cm $^{-3}$ Absorptionskoeffizient 0.895 mm $^{-1}$ $F(000)$ 2144 Daten-SammlungDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073$ Å)Temperatur 213 KMonochromatorHochorientierter Graphitkristall 2θ Bereich 3.0 bis 50.0° Scan Typ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00° /min in ω Scan Bereich (ω) 1.00° Standard Reflexe 3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeReflexe 7687 Unabhängige Reflexe 7358 ($R(int) = 5.05$ %)Beobachtete Reflexe 4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ LösungDirekte MethodenVerfeinerungBiockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter 586 R Index (beobachtete) Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$		c = 17.622(14) Å
Volumen $4861(10) Å^3$ Z4MG1042.2Dichte (ber.) 1.424 g cm^{-3} Absorptionskoeffizient 0.895 mm^{-1} $F(000)$ 2144 Daten-SammlungDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073 Å$)Temperatur 213 K MonochromatorHochorientierter Graphitkristall 2θ Bereich $3.0 \text{ bis } 50.0^{\circ}$ Scan Typ ω Scan Geschwindigkeitvariabel; $2.50 \text{ bis } 60.00^{\circ}/\text{min in } \omega$ Scan Bereich (ω) 1.00° Standard Reflexe $3 \text{ nach je } 100 \text{ gemessenen Reflexen}$ Index Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeReflexe 7687 Unabhängige Reflexe $7358 (R(int) = 5.05 \%)$ Beobachtete Reflexe $4665 (F > 4.0 \sigma(F))$ Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter 7886 R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 6.42\%, Rw = 11.90\%$		$\beta = 98.53(2)^{\circ}$
Z4MG1042.2Dichte (ber.) 1.424 g cm^{-3} Absorptionskoeffizient 0.895 mm^{-1} $F(000)$ 2144Daten-SammlungDiffraktometerDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073 \text{ Å}$)Temperatur213 KMonochromatorHochorientierter Graphitkristall2 θ Bereich3.0 bis 50.0°Scan Typ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Bereich (ω) 1.00° Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener7687Unabhängige Reflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ LösungDirekte MethodenVerfeinerungBiockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter7866Parameter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Volumen	4861(10) Å ³
MG 1042.2 Dichte (ber.) 1.424 g cm^{-3} Absorptionskoeffizient 0.895 mm^{-1} $F(000)$ 2144 Daten-SammlungDiffraktometerDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073 \text{ Å}$)Temperatur 213 K MonochromatorHochorientierter Graphitkristall 2θ Bereich $3.0 \text{ bis } 50.0^{\circ}$ Scan Typ ω Scan Geschwindigkeitvariabel; $2.50 \text{ bis } 60.00^{\circ}/\text{min in } \omega$ Scan Bereich (ω) 1.00° Standard Reflexe $3 \text{ nach je } 100 \text{ gemessenen Reflexen}$ Index Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener 7687 Reflexe 7687 Unabhängige Reflexe $7358 (R(int) = 5.05 \%)$ Beobachtete Reflexe $4665 (F > 4.0 \sigma(F))$ Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ Lösung und VerfeinerungSiemens sHELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter 7866 Parameter 5866 R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Z	4
Dichte (ber.) 1.424 g cm^{-3} Absorptionskoeffizient 0.895 mm^{-1} $F(000)$ 2144 Daten-SammlungDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073 \text{ Å}$)Temperatur 213 K MonochromatorHochorientierter Graphitkristall 2θ Bereich $3.0 \text{ bis } 50.0^{\circ}$ Scan Typ ω Scan Geschwindigkeitvariabel; $2.50 \text{ bis } 60.00^{\circ}/\text{min in } \omega$ Scan Bereich (ω) 1.00° Standard Reflexe $3 \text{ nach je 100 gemessenen Reflexen}$ Index Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeReflexe 7687 Unabhängige Reflexe $7358 (R(int) = 5.05 \%)$ Beobachtete Reflexe $4665 (F > 4.0 \sigma(F))$ Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ LösungDirekte MethodenVerfeinerungBiockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter 7866 Parameter 5866 R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	 MG	1042.2
Absorptionskoeffizient 0.895 mm^{-1} $F(000)$ 2144 Daten-SammlungDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073$ Å)Temperatur 213 K MonochromatorHochorientierter Graphitkristall 2θ Bereich $3.0 \text{ bis } 50.0^{\circ}$ Scan Typ ω Scan Geschwindigkeitvariabel; $2.50 \text{ bis } 60.00^{\circ}/\text{min in } \omega$ Scan Bereich (ω) 1.00° Standard Reflexe $3 \text{ nach je 100 gemessenen Reflexen}$ Index Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener7687Unabhängige Reflexe7358 ($R(\text{int}) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ LösungDirekte MethodenVerfeinerungBiockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter $Farameter$ Parameter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Dichte (ber.)	1.424 g cm^{-3}
$F(000)$ 2144Daten-SammlungSiemens P4DiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073$ Å)Temperatur213 KMonochromatorHochorientierter Graphitkristall2 θ Bereich3.0 bis 50.0°Scan Typ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Bereich (ω)1.00°Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeReflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05$ %)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723LösungDirekte MethodenVerfeinerungBiockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter Parameter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Absorptionskoeffizient	0.895 mm^{-1}
Daten-SammlungDiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073$ Å)Temperatur213 KMonochromatorHochorientierter Graphitkristall 2θ Bereich 3.0 bis 50.0° Scan Typ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00° /min in ω Scan Bereich (ω) 1.00° Standard Reflexe 3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener 7687 Unabhängige Reflexe 7588 ($R(int) = 5.05$ %)Beobachtete Reflexe 4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ Lösung und VerfeinerungSiemens shELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungReiter-Modell, fixiertes U_i Anzahl verfeinerter 7866 Parameter 5866 R Index (beobachtete $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	F(000)	2144
DiffraktometerSiemens P4StrahlungMoK α ($\lambda = 0.71073$ Å)Temperatur213 KMonochromatorHochorientierter Graphitkristall2 θ Bereich3.0 bis 50.0°Scan Typ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Bereich (ω)1.00°Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeReflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723LösungDirekte MethodenVerfeinerungSiemens shELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter F Parameter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Daten-Sammlung	
StrahlungMoK α ($\lambda = 0.71073$ Å)Temperatur213 KMonochromatorHochorientierter Graphitkristall2 θ Bereich3.0 bis 50.0°Scan Typ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Bereich (ω)1.00°Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeReflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723LösungDirekte MethodenVerfeinerungBiockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter $Farameter$ Parameter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Diffraktometer	Siemens P4
StrandingIndex $(x = 0.71075 R)$ Temperatur213 KMonochromatorHochorientierter Graphitkristall20 Bereich3.0 bis 50.0°Scan Typ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00° /min in ω Scan Bereich (ω)1.00°Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeReflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723Lösung und VerfeinerungSiemens shELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Strahlung	$M_0 K_{\alpha}(\lambda = 0.71073 \text{ Å})$
TemperaturInstructMonochromatorHochorientierter Graphitkristall 2θ Bereich 3.0 bis 50.0° Scan Typ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00° /min in ω Scan Bereich (ω) 1.00° Standard Reflexe 3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener 7687 Unabhängige Reflexe 758 ($R(int) = 5.05$ %)Beobachtete Reflexe 4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ LösungDirekte MethodenVerfeinerungBiockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter 586 R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Temperatur	213 K
AnometerTheometerComparison 2θ Bereich 3.0 bis 50.0° ∞ $3can Typ$ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00° /min in ω Scan Bereich (ω) 1.00° Standard Reflexe 3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener 7687 Unabhängige Reflexe $7586 (R(int) = 5.05 \%)$ Beobachtete Reflexe $4665 (F > 4.0 \sigma(F))$ Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ Lösung und VerfeinerungSiemens shELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter 7866 Parameter 586 R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Monochromator	Hochorientierter Graphitkristall
Scan Typ ω Scan Typ ω Scan Geschwindigkeitvariabel; 2.50 bis 60.00°/min in ω Scan Bereich (ω)1.00°Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeReflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723Lösung und VerfeinerungSiemens shELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	20 Bereich	3.0 his 50.0°
Scan Geschwindigkeitvariabel; 2.50 bis 60.00° /min in ω Scan Bereich (ω)1.00°Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessener $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Reflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723Lösung und VerfeinerungSiemens shELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Scan Typ	ω
Scan Bereich (ω)1.00°Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeReflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723Lösung und VerfeinerungSiemens shELXTL PLUS (PC Version)DösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Scan Geschwindigkeit	variabel: 2.50 bis 60.00°/min in ω
Standard Reflexe3 nach je 100 gemessenen ReflexenIndex Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeReflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723Lösung und VerfeinerungSiemens sHELXTL PLUS (PC Version)DösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Scan Bereich (ω)	1.00°
Index Bereich $0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$ Anzahl gemessenerReflexeReflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723Lösung und VerfeinerungSiemens shELXTL PLUS (PC Version)Dörekte MethodenDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Standard Reflexe	3 nach je 100 gemessenen Reflexen
Anzahl gemessener Reflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723Lösung und VerfeinerungSiemens shELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter Parameter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Index Bereich	$0 \le h \le 16, 0 \le k \le 22, -20 \le l \le 19$
Reflexe7687Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission0.761/0.723Lösung und VerfeinerungSiemens shELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Anzahl gemessener	
Unabhängige Reflexe7358 ($R(int) = 5.05 \%$)Beobachtete Reflexe4665 ($F > 4.0 \sigma(F)$)Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ Lösung und VerfeinerungSiemens shelxtl plus (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter Parameter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Reflexe	7687
Beobachtete Reflexe $4665 (F > 4.0 \sigma(F))$ Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ Lösung und VerfeinerungSiemens SHELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter 586 R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Unabhängige Reflexe	7358 (R(int) = 5.05 %)
Absorptions-KorrekturHalb-empirischMax./min. Transmission $0.761/0.723$ Lösung und VerfeinerungSiemens SHELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter586Parameter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Beobachtete Reflexe	$4665 (F > 4.0 \sigma(F))$
Max./min. Transmission $0.761/0.723$ Lösung und VerfeinerungSiemens SHELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter586Parameter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Absorptions-Korrektur	Halb-empirisch
Lösung und VerfeinerungSiemens SHELXTL PLUS (PC Version)SystemSiemens SHELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter Parameter586R Index (beobachtete Daten) $R = 6.42\%$, $Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%$, $Rw = 11.90\%$	Max./min. Transmission	0.761/0.723
SystemSiemens SHELXTL PLUS (PC Version)LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter Parameter586R Index (beobachtete Daten) $R = 6.42\%$, $Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%$, $Rw = 11.90\%$	Lösung und Verfeinerung	
LösungDirekte MethodenVerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter Parameter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	System	Siemens SHELXTL PLUS (PC Version)
VerfeinerungBlockmatrix, Kleinste Quadrate- VerfeinerungWasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerterParameterParameter586R Index (beobachtete Daten) $R = 6.42\%$, $Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%$, $Rw = 11.90\%$	Lösung	Direkte Methoden
Wasserstoff-AtomeReiter-Modell, fixiertes U_i Anzahl verfeinerter V_i Parameter586R Index (beobachtete $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Verfeinerung	Blockmatrix, Kleinste Quadrate- Verfeinerung
Anzahl verfeinerter Parameter586R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Wasserstoff-Atome	Reiter-Modell, fixiertes U _i
Parameter586 R Index (beobachteteDaten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Anzahl verfeinerter	•
R Index (beobachtete Daten) $R = 6.42\%, Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Parameter	586
Daten) $R = 6.42\%$, $Rw = 11.31\%$ R Index (alle Daten) $R = 10.17\%$, $Rw = 11.90\%$	R Index (beobachtete	
<i>R</i> Index (alle Daten) $R = 10.17\%, Rw = 11.90\%$	Daten)	R = 6.42%, Rw = 11.31%
	R Index (alle Daten)	R = 10.17%, Rw = 11.90%

^a Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-58085, der Autoren und des Zeitschriftenzitates angefordert werden.

in 20 ml Methanol *ca.* 15–25 Minuten unter laufender IR-Kontrolle mit einer 150 W Hg-Hochdrucklampe der Fa. Original Quarzlampen GmbH, Hanau. Ein eventuell auftretender Niederschlag wird über eine kurze Kieselgel-Säule filtriert. Nach dem destillativen Entfernen des Lösungsmittels erhält man die Produkte 4a-cals tiefrote Pulver, die i.V. getrocknet werden. 3.3.1. μ_2 -Carbonyl-bis[cyclopentadienylcarbonylferrio]methylphenylphosphoniumiodid (4a)

Ansatz 1.20 g (1.99 mmol) **3a**, Ausbeute 0.97 g (84.6%). Schmp. 135°C. FD-MS (m/e) 449 $[M - I]^+$.

TABELLE 5. Atomkoordinaten $(\cdot 10^4)$ und äquivalente isotrope Temperaturfaktoren U_{ia} (Å²·10³) von **3b'**

Atom	x	y	z	$\overline{U}_{\ddot{a}q}$
Fe(1)	4022(1)	2164(1)	3269(1)	22(1)
Fe(2)	1298(1)	2054(1)	3497(1)	24(1)
P(1)	2719(2)	1518(1)	3442(2)	21(1)
O(1)	2001(6)	2836(5)	4871(5)	53(3)
O(2)	1682(6)	3103(4)	2396(5)	52(3)
O(3)	5086(5)	901(4)	3143(5)	46(3)
O(4)	3389(6)	2424(4)	1652(4)	44(3)
C(1)	2452(7)	673(5)	4780(5)	25(3)
C(2)	2288(8)	962(2)	5465(6)	36(4)
C(3)	1668(8)	663(7)	5906(6)	39(4)
C(4)	1212(8)	61(7)	5659(7)	37(4)
C(5)	1382(8)	-235(6)	4994(7)	37(4)
C(6)	1985(7)	57(5)	4547(6)	30(4)
C(7)	3150(7)	993(5)	4323(6)	26(3)
C(8)	2577(7)	891(5)	2648(6)	28(4)
C(9)	2986(7)	235(6)	2678(7)	33(4)
C(10)	2967(9)	- 174(6)	2041(7)	45(5)
C(11)	2544(9)	48(6)	1339(7)	45(5)
C(12)	2114(8)	685(7)	1275(7)	43(4)
C(13)	2134(7)	1102(6)	1923(6)	35(4)
C(14)	4995(8)	2410(6)	4271(6)	37(4)
C(15)	4091(8)	2652(6)	4355(6)	33(4)
C(16)	3801(7)	3122(5)	3760(6)	32(4)
C(17)	4549(8)	3176(5)	3311(6)	33(4)
C(18)	5273(7)	2731(6)	3619(7)	37(4)
C(19)	228(7)	1542(7)	2761(7)	40(4)
C(20)	584(7)	1105(6)	3373(6)	34(4)
C(21)	417(7)	1426(7)	4062(6)	36(4)
C(22)	-46(15)	2066(7)	3865(7)	37(4)
C(23)	- 169(7)	2132(7)	3068(7)	42(4)
C(24)	1758(7)	2519(6)	4328(6)	30(4)
C(25)	4658(7)	1385(6)	3174(6)	31(4)
C(26)	3615(7)	2294(5)	2277(6)	29(4)
C(27)	1547(7)	2684(6)	2830(6)	32(4)
C(28)	- 1900(7)	2616(6)	6170(5)	27(4)
C(29)	- 1327(8)	2030(7)	6194(6)	40(4)
C(30)	- 400(9)	2062(9)	6029(7)	55(5)
C(31)	- 62(10)	2696(10)	5827(7)	66(7)
C(32)	- 594(9)	3262(9)	5799(7)	55(6)
C(33)	- 1488(8)	3225(7)	5978(6)	38(4)
C(34)	- 3676(7)	3180(5)	6056(6)	25(3)
C(35)	- 4421(7)	3380(6)	6423(7)	34(4)
C(36)	- 5116(8)	3837(6)	6087(7)	42(4)
C(37)	- 5042(9)	4131(6)	5383(7)	44(5)
C(38)	- 4305(9)	3944(6)	5008(6)	39(4)
C(39)	- 3631(7)	3474(5)	5339(6)	27(4)
C(40)	- 3519(7)	1859(5)	6182(6)	22(3)
C(41)	- 4265(7)	1659(6)	6557(7)	36(4)
C(42)	- 4843(8)	1095(6)	6324(7)	41(4)
C(43)	- 4700(8)	713(6)	5702(7)	35(4)
C(44)	- 3963(8)	897(5)	5313(6)	33(4)

TABELLE 5 (continued)

C(45)	- 3385(7)	1446(5)	5554(6)	26(3)
C(46)	- 2724(6)	2622(5)	7377(6)	20(3)
C(47)	- 2720(7)	3224(6)	7798(6)	28(4)
C(48)	- 2478(7)	3250(6)	8596(6)	34(4)
C(49)	- 2237(7)	2656(6)	9002(6)	32(4)
C(50)	- 2216(7)	2055(6)	8614(6)	28(4)
C(51)	- 2447(6)	2034(6)	7814(6)	26(3)
C(52)	3245(12)	5010(8)	3548(8)	72(6)
C(53)	- 49(15)	4722(10)	3258(13)	124(11)
B(1)	- 2944(8)	2570(6)	6438(6)	22(4)
Cl(1)	2439(3)	4691(2)	4113(3)	79(2)
Cl(2)	3035(4)	4742(2)	2606(2)	92(2)
Cl(3)	- 221(6)	4296(4)	2462(4)	151(4)
Cl(4)	-6(4)	4212(4)	4081(3)	148(3)

Elemental analysis: $C_{20}H_{18}Fe_2IO_3P$ (575.93) gef. (ber.) (%) C 40.68 (41.71), H 2.99 (3.14).

3.3.2. μ_2 -Carbonyl-bis[cyclopentadienylcarbonylferrio]benzylphenylphosphoniumchlorid (4b)

Ansatz 650 mg (1.10 mmol) **3b**, Ausbeute 607 mg (98.5%). Schmp. 143°C (Zers.). FD-MS (m/e) 376 [M - Cl - CpFeCO]⁺. Elemental analysis: C₂₆H₂₂Cl-Fe₂-O₃P (560.58) gef. (ber.) (%) C 54.04 (55.65), H 4.27 (3.96).

3.3.3. μ_2 -Carbonyl-bis[cyclopentadienylcarbonylferrio](ethoxycarbonylmethyl)phenylphosphoniumchlorid (4c)

Ansatz 420 mg (0.72 mmol) **3c**, Ausbeute 173 mg (43.2%). Schmp. 140°C (Zers.). FD-MS (m/e) 521 [M – Cl]⁺. Elemental analysis: C₂₃H₂₂ClFe₂O₃P (556.55) gef. (ber.) (%) C 48.86 (49.64), H 3.72 (3.98).

3.4. Darstellung von $[{CpFe(CO)_2}_2PClR]Cl (R = Ph, CH_3, {}^{i}Pr, Cl) (6d-g) und <math>[{CpFe(CO)_2}_2PMesH]Cl (7)$

Allgemeine Arbeitsvorschrift: Zu einer Lösung von 2.00 g (5.64 mmol) $[CpFe(CO)_2]_2$ in 70 ml Toluol pipettiert man 5.64 mmol des entsprechenden Dichlorbzw. Trichlorphosphans und rührt über Nacht bei 60°C. Der Niederschlag wird abfiltriert, mit 10 ml Petrolether gewaschen und i.V. getrocknet, wobei man hellgelbe Pulver erhält.

3.4.1. Bis[cyclopentadienyldicarbonylferrio]chlorophenylphosphoniumchlorid (6d)

Ansatz 1.00 g PhPCl₂, Ausbeute 2.3 g (76.7%). Schmp. 188°C (Zers.). FD-MS (m/e) 497 [M – Cl]⁺. Elemental analysis: C₂₀H₁₅Fe₂O₄PCl₂ (532.91) gef. (ber.) (%) C 44.28 (45.08), H 3.10 (2.84). 3.4.2. Bis[cyclopentadienyldicarbonylferrio]chloromethylphosphoniumchlorid (6e)

Ansatz 0.66 g MePCl₂, Ausbeute 1.7 g (63.9%). Schmp. 145°C (Zers.). EI-MS (m/e) 435 $[M - Cl]^+$. Elemental analysis: $C_{15}H_{13}Fe_2O_4PCl_2$ (470.84) gef. (ber.) (%) C 38.78 (38.26), H 2.53 (2.78).

3.4.3. Bis[cyclopentadienyldicarbonylferrio]chloroiso-propylphosphoniumchlorid (6f)

Ansatz 0.82 g ⁱPrPCl₂, Ausbeute 2.1 g (74.5%). Schmp. 167°C (Zers.). FAB-MS (m/e) 463 [M – Cl]⁺. Elemental analysis: C₁₇H₁₇Fe₂O₄PCl₂ (498.89) gef. (ber.) C 40.28 (40.93), H 3.69 (3.43).

3.4.4. Bis[cyclopentadienyldicarbonylferrio]dichlorophosphoniumchlorid (6g)

Ansatz 0.79 g PCl₃, Ausbeute 2.6 g (93.2%). Schmp. 212°C. FAB-MS (m/e) 455 [M – Cl]⁺. Elemental analysis: C₁₄H₁₀Fe₂O₄PCl₃ (491.26) gef. (ber.) (%) C 33.74 (34.23), H 2.35 (2.05).

3.4.5. Bis[cyclopentadienyldicarbonylferrio]mesitylphosphoniumchlorid (7)

Ansatz 1.25 g MesPCl₂, Ausbeute 1.8 g (59.0%). Schmp. 134°C. FD-MS (m/e) 505 [M – Cl]⁺. Elemental analysis: C₂₃H₂₂Fe₂O₄PCl (540.55) gef. (ber.) (%) C 51.05 (51.11), H 4.39 (4.10).

3.5. Darstellung von Bis[cyclopentadienyldicarbonylferrio]mesitylphosphan $\{CpFe(CO)_2\}_2 PMes$ (8)

Zu einer Suspension von 200 mg (0.37 mmol)[{CpFe(CO)₂}₂PMesH]Cl (7) in 3 ml THF werden 42 mg (0.37 mmol) KO^tBu gegeben. Dabei bildet sich aus 7 eine dunkelbraune Lösung von 8. Ausbeute quantitativ (³¹P-NMR-spektroskopisch), nicht isoliert.

Literatur

- 1 B.E. Maryanoff und A.B. Reitz, Chem. Rev., 89 (1977) 423.
- 2 H. Pommer, Angew. Chem., 89 (1977) 437; Angew. Chem., Int. Ed. Engl., 16 (1977) 423.
- 3 R. Hoffmann, Angew. Chem., 94 (1982) 725; Angew. Chem., Int. Ed. Engl., 21 (1982) 711.
- 4 I.-P. Lorenz, C. Klasen und G. Effinger, Phosphorus, Sulfur, Silicon, 77 (1993) 37.
- 5 P. Mürschel, Diplomarbeit, Universität München, 1992.
- 6 G. Effinger, W. Hiller und I.-P. Lorenz, Z. Naturforsch., 42b (1987) 1315.
- 7 R.J. Haines, C.R. Nolte, J. Organomet. Chem., 36 (1972) 163.
- 8 R.G. Hayter, L.F. Williams, Inorg. Chem., 3 (1964) 613.
- 9 C. Klasen, G. Effinger, S. Schmid, I.-P. Lorenz, Z. Naturforsch., 48b (1993) 705.
- 10 F. Einstein, R. Jones, Inorg. Chem., 7 (1973) 1690.
- 11 W.R. Cullen, D.J. Patmore, J.R. Sams, Inorg. Chem., 4 (1973) 867.
- 12 W. Pohl, I.-P. Lorenz, unveröffentlichte Ergebnisse.
- 13 I.-P. Lorenz, G. Effinger, W. Hiller, Chem. Ber., 123 (1990) 251.

- 14 G. Huttner, Pure Appl. Chem., 58 (1986) 585.
- 15 G. Huttner, K. Evertz, Acc. Chem. Res., 19 (1986) 406.
- 16 J. Hahn, T. Nataniel, Z. Anorg. Allg. Chem., 543 (1986) 7.
- 17 H. Goldwhite, J. Kaminski, G. Millhauser, J. Ortiz, M. Vargas, L. Vertal, M.F. Lappert, S.J. Smith, J. Organomet. Chem., 310 (1986) 21.
- 18 M. Fild, O. Stelzer, R. Schmutzler, Inorg. Synthesis, 14 (1973) 4.
- G. Brauer, Handbuch der Präparativen Anorganischen Chemie,
 3. Aufl., F. Enke Verlag, Stuttgart, 1981, Bd. 3, S. 1872.
- G. Brauer, Handbuch der Präparativen Anorganischen Chemie,
 Aufl., F. Enke Verlag, Stuttgart, 1981, Bd. 3, S. 1892.
- 21 Lösung der Struktur mit dem System Siemens shelxtl plus (PC Version).